• XIAN XIWUER ELECTRONIC AND INFO. CO., LTD
    리차드
    "XIWUER는 매우 혁신적입니다. 우리가 필요로 할지도 모르는 것에 관해 미래를 앞으로 조사하면서, 그들은 우수한, 직관적 서비스를 제공했습니다."
  • XIAN XIWUER ELECTRONIC AND INFO. CO., LTD
    마이크
    "우리의 엄중한 처리 조건을 충족시키기 위해 다른 사양을 설계하는 것에게 XIWUER의 헌납은 우리의 수년간의 연구 개발을 표명합니다 "
  • XIAN XIWUER ELECTRONIC AND INFO. CO., LTD
    결혼하세요
    "XIWUER는 인상적 연구 능력을 가지고, 좋은 원형 역량과 고품질 품질을 증명합니다 "
담당자 : Wang Hong

Precise Injection And Stable Circulation: The Key Role Of High-voltage Doorknob Capacitors In The Pulsed Magnet Power Supply Of Synchrotron Radiation Light Sources

원래 장소 서안, 중국
브랜드 이름 XIWUER
인증 ISO9001,ISO14001,ISO45001
문서 High Voltage Ceramic Capaci...25.pdf
최소 주문 수량 1pcs
가격 협상 가능
포장 세부 사항 판지 상자
배달 시간 5-7 일
지불 조건 l/c, t/t
공급 능력 일년에 4,000,000 PC

무료샘플과 쿠폰을 위해 나와 연락하세요.

왓츠앱:0086 18588475571

위챗: 0086 18588475571

스카이프: sales10@aixton.com

만약 당신이 어떠한 관심도 가지면, 우리가 24 시간 온라인 도움말을 제공합니다.

x
제품 상세 정보
산재 ≦0.0040 내 전압 1.5UR ● 1 분
절연 저항 1.0 × 105mΩ
강조하다

high voltage doorknob capacitors pulsed magnet

,

synchrotron radiation capacitors stable circulation

,

high voltage capacitors with warranty

메시지를 남겨주세요
제품 설명

High-voltage doorknob capacitors in the pulsed magnet power supply of synchrotron radiation light sources

Drawing:

Precise Injection And Stable Circulation: The Key Role Of High-voltage Doorknob Capacitors In The Pulsed Magnet Power Supply Of Synchrotron Radiation Light Sources 0

Parameters:

No. Specification Dissipation Withstanding voltage Insulation resistance Dimension(mm)
1 20kV-2000pF








≦0.0040








1.5Ur 1min








≧1.0×105MΩ

D H L D M
2 20kV-10000pF 45 19 23 12 5
3 20kV-18000pF 65 15 19 12 5
4 30kV-1000pF 80 17 25 12 5
5 30kV-2700pF 45 24 32 12 4
6 30kV-12000pF 60 20 28 12 4
7 40kV-150pF 20 33 41 8 4
8 40kV-500pF 28 33 41 8 4
9 40kV-7500pF 80 24 29 12 6
10 40kV-10000pF 80 22 26 16 5
11 50kV-1000pF 50 30 34 12 4
12 50kV-1000pF 32 27 31 16 5
13 50kV-5600pF 80 31 35 16 5
14 60kV-1500pF 50 31 34 12 5
15 60kV-3000pF 65 32 35 16 5
16 100kV-500pF 50 54 58 12 5
17 100kV-2000pF 51 32 35 16 5
18 Insulator type 100kV-1500pF 68 36 40 16 5
19 150kV-820pF 65 95 100 12 5
20 200kV-600pF 50 90 94 16 5



Core Functions:

The leap in performance at synchrotron radiation sources is largely due to innovations in beam injection technology. In particular, innovative schemes such as on-axis displacement injection, employed by fourth-generation sources, place extremely stringent demands on pulsed magnet power supplies: they must instantly deliver massive pulsed currents to generate precisely controlled magnetic fields, effectively driving the electron beam into or out of its intended trajectory. High-voltage doorknob capacitors are the core guarantee for the high-precision and high-stability operation of these high-performance pulsed magnet power supplies.

Challenge:

Why are pulsed magnet power supply requirements so stringent?

Take the fourth-generation High Energy Synchrotron Source (HEPS) as an example. The bumper magnet used in its booster extraction system requires the pulsed power supply to output a half-sine wave with a bottom width of less than 1 millisecond, with peak current fluctuations controlled within ±0.3% and waveform consistency deviations less than 5%. Any distortion or jitter in the current waveform can lead to:

Electron beam trajectory deviation, resulting in reduced injection efficiency and impacting the stability of the storage circulation intensity.

Synchrotron radiation beam position drift, affecting the directivity and data quality of the light at downstream experimental stations.

Solution:

Perfect combination of LC resonant pulse circuit and high-performance capacitors

This type of pulse power supply often uses an LC resonant circuit topology. A high-voltage doorknob capacitor (C) and the pulse magnet inductor (L) form a resonant circuit. Switching (e.g., IGBT) control generates the required high-quality half-sine current pulses.

In this application, the performance of the doorknob capacitor directly determines the quality of the pulse waveform:

Low-inductance design ensures a sharp pulse front: The capacitor's low equivalent series inductance and the overall circuit inductance together determine the pulse rise speed. Our low-ESL doorknob capacitors effectively ensure a sharp pulse front, meeting fast response requirements.

Highly stable capacitance ensures waveform consistency: Long-term capacitance stability and low drift are key to ensuring consistent pulse waveforms from time to time. We use highly stable ceramic dielectrics to ensure minimal capacitance variation even under frequent charge and discharge cycles (e.g., 50Hz operating frequency), thereby ensuring high repeatability of the injection process.

Efficient energy recovery: To reduce energy consumption and heat load, advanced designs incorporate energy recovery circuits. The capacitor feeds back the remaining energy through the recovery circuit during the pulse interval, which not only improves the efficiency but also reduces the interference with the output pulse waveform. This also requires the capacitor to have high efficiency and fast charging and discharging capabilities.